Asymmetric split H-shape nanoantennas for molecular sensing

نویسندگان

  • I. G. Mbomson
  • S. Tabor
  • B. Lahiri
  • G. Sharp
  • S. G. McMeekin
  • R. M. De La Rue
  • N. P. Johnson
چکیده

In this paper we report on a very sensitive biosensor based on gold asymmetric nanoantennas that are capable of enhancing the molecular resonances of C-H bonds. The nanoantennas are arranged as arrays of asymmetric-split H-shape (ASH) structures, tuned to produce plasmonic resonances with reflectance double peaks within the mid-infrared vibrational resonances of C-H bonds for the assay of deposited films of the molecule 17β-estradiol (E2), used as an analyte. Measurements and numerical simulations of the reflectance spectra have enabled an estimated enhancement factor on the order of 105 to be obtained for a thin film of E2 on the ASH array. A high sensitivity value of 2335 nm/RIU was achieved, together with a figure of merit of approximately 8. Our experimental results were corroborated using numerical simulations for the C-H stretch vibrational resonances from the analyte, superimposed on the plasmonic resonances of the ASH nanoantennas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deposition of Organic Molecules on Gold Nanoantennas for Sensing

The deposition of organic molecules on gold nanoantennas is reported through chemisorption for sensing in the midinfrared (mid-IR) spectral range. The specific nanostructures are gold asymmetric-split ring resonators (A-SRRs) based on circular-geometry with two different ‘arc’ lengths. The plasmonic resonant coupling technique was used to match the vibrational responses of the targeted molecule...

متن کامل

3D plasmonic nanoantennas integrated with MEA biosensors.

Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensiona...

متن کامل

Cascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods

Cascaded field enhancement is demonstrated in asymmetric plasmon resonant dimer nanoantennas consisting of shape-tuned ellipsoidal nanoparticles. The nanoparticles that make up the dimer have identical thickness, suggesting that the presented approach can be used to design cascaded dimer antennas compatible with standard two-dimensional top-down nanofabrication tools such as electron beam litho...

متن کامل

Ultrasensitive and label-free molecular level detection enabled by light phase control in magnetoplasmonic nanoantennas

Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single-molecule sensing, arising from intrinsically nanoscopic sensing volume and the high s...

متن کامل

Broadband scattering by tapered nanoantennas

1 Introduction Plasmonic nanoantennas have become a subject of considerable interest [1–3]. Numerous intriguing applications of nanoantennas in areas as diverse as optical and quantum communication, nonlinear optics, sensing, and photovoltaics have been discussed [3]. Ar-rayed nanoantennas like Yagi–Uda architectures down-scaled to nanometer dimensions are particularly suited for such applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017